





# **Great Lakes Operational Meteorology Workshop**

August 25, 2015 Grand Rapids, Michigan

Design Considerations for Road Weather Information Systems to Detect, Measure, and Support Forecasts for Lake Effect/Enhanced Snows

Bob Hart

## **ITERIS**

## Road Weather Information System (RWIS)



- Network of Environmental Sensor Stations (ESS)
- Purpose is to record and report:
  - Pavement temperature
  - Pavement condition
  - Weather conditions
  - Camera imagery of pavement & roadway environment
  - Traffic speeds & volume (optional)



# ITERIS\*

## Road Weather Information System (RWIS)

- Supports
  - DOT maintenance
  - Travelers
  - Weather service providers
    - To aid forecast products
    - To supplement analysis fields
  - Traffic management
  - Research organizations

#### **RWIS Infrastructure**



- Owner typically state DOT
- ESS Network Implementation typically done by DOT district or region
- Data Acquisition and Delivery
  - Managed by owner agency
  - Data collected from ESS remote processing unit using cellular or radio communications
  - Data transported to central processing center
  - Users typically access RWIS & weather data via web sites
    - Maintenance personnel & travelers

### **RWIS Network Design**



- RWIS has been a transportation support system
- Design considerations for ESS sites
  - Evenly distributed network
    - To fairly support maintenance facilities
    - To provide representative data
  - Site selection to serve major traffic corridors
  - Critical local maintenance issues
    - Accident prone zones
    - Monitor remote areas away from maintenance facilities
    - Areas affected by local weather conditions
  - Fill gaps in existing weather networks

























#### LAKE EFFECT SNOW SITES



- ESS06 I-75 & Levering Road
  - Break point in rise from Lake Michigan (577') to 800' plateau extending south for 40 miles
- ESS07 US-131 8 miles south of Petoskey
  - 1 mile long hill climbing from 780' to 915'
- ESS08 M-72 10 east if Kalkaska
  - West edge of N/S moraine 170 feet above the Boardman River drainage plain
- ESS11 US-131 @ Wexford SCL
  - On upslope from 1200' to 1400' into Cadillac highlands
  - Westerly flow funneled up the Pine River basin

#### LAKE EFFECT SNOW SITES



- ESS03 M-33 @ Loon Lake
  - Morainal dome that is 200+ feet higher than surrounding plateau
  - Affected by northwest LES flow



#### LAKE EFFECT SNOW SITES



- Key Criteria for Determining LES Sites
  - Experience of MDOT winter maintenance personnel
  - Routine travelers
  - Highway patrol

# ITERIS\*

#### PRIMARY LES MONITORING TOOLS



- Cameras
  - Multiple views
    - Road surface
    - Views along highway
  - This is MDOT preferred resource
- Present weather sensor
  - Precipitation type
  - Precipitation rate
  - Visibility
  - Most effective sensor is the WIVIS sensor (equivalent to the LEDWI)
- Other support
  - Temp/RH and winds



# **QUESTIONS?**

Thank you,

Bob Hart
rdh@iteris.com